
Essential Java (1st Edition)

Rahul Batra

18 December 2013



Table of Contents

Pr eface . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
About the Author . . . . . . . . . . . . . . . . . . . . . . . .  4
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . .  5
Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  9

1.1 What is Java? . . . . . . . . . . . . . . . . . . . . . . .  9
1.2 Advantages of Java . . . . . . . . . . . . . . . . . . . . .  9
1.3 Getting Java . . . . . . . . . . . . . . . . . . . . . . . .  9
1.4 Writing your first Java program . . . . . . . . . . . . . . . . .  10
1.5 Analyzing your first program . . . . . . . . . . . . . . . . . .  11

2. Data Types and Variables . . . . . . . . . . . . . . . . . . . .  12
2.1 Literals . . . . . . . . . . . . . . . . . . . . . . . . .  12
2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . .  12
2.3 Data Types . . . . . . . . . . . . . . . . . . . . . . . .  12

3. Introducing Classes & Objects . . . . . . . . . . . . . . . . . .  14
3.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . .  14
3.2 Defining classes and objects . . . . . . . . . . . . . . . . . .  14
3.3 Creating a class in Java . . . . . . . . . . . . . . . . . . .  15

4. Conditional Statements . . . . . . . . . . . . . . . . . . . . .  17
4.1 Comparison Operators . . . . . . . . . . . . . . . . . . . .  17
4.2 If-Else Conditional . . . . . . . . . . . . . . . . . . . . .  17
4.3 Switch Conditionals . . . . . . . . . . . . . . . . . . . . .  18

5. Iteration Statements . . . . . . . . . . . . . . . . . . . . . .  20
5.1 The while loop . . . . . . . . . . . . . . . . . . . . . . .  20
5.2 The do-while loop . . . . . . . . . . . . . . . . . . . . . .  21
5.3 The for loop . . . . . . . . . . . . . . . . . . . . . . . .  21
5.4 break and continue . . . . . . . . . . . . . . . . . . . . .  22

6. Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
6.1 Array Initialization . . . . . . . . . . . . . . . . . . . . .  23
6.2 Using Arrays . . . . . . . . . . . . . . . . . . . . . . .  24
6.3 The enhanced for loop . . . . . . . . . . . . . . . . . . . .  24

7. Methods . . . . . . . . . . . . . . . . . . . . . . . . . .  26
7.1 Parameters & Return Values . . . . . . . . . . . . . . . . . .  26
7.2 Constructors . . . . . . . . . . . . . . . . . . . . . . .  27

8. Inheritance . . . . . . . . . . . . . . . . . . . . . . . . .  29
8.1 Extending a class . . . . . . . . . . . . . . . . . . . . . .  29
8.2 Access Specifiers . . . . . . . . . . . . . . . . . . . . . .  30
8.3 The super Keyword . . . . . . . . . . . . . . . . . . . . .  31

9. Abstract Classes and Interfaces . . . . . . . . . . . . . . . . . .  33
9.1 Abstract Classes . . . . . . . . . . . . . . . . . . . . . .  33
9.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . .  33
9.3 Multiple Inheritance and Interfaces . . . . . . . . . . . . . . .  34

10. Exception Handling . . . . . . . . . . . . . . . . . . . . . .  36
10.1 The try-catch block . . . . . . . . . . . . . . . . . . . . .  36
10.2 Java Exception Classes . . . . . . . . . . . . . . . . . . .  37
10.3 The finally statement . . . . . . . . . . . . . . . . . . . .  37

Further Reading . . . . . . . . . . . . . . . . . . . . . . . . .  39
Appendix: Code Editors and Integrated Development Environments . . . . . .  40
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . .  41



-2-

To Pria



-3-

PREFACE

Welcome to the first edition of Essential Java, a short (e)book meant as a gentle
intr oduction to the basics of Java. Although no prior programming experience is neces-
sary, any knowledge of how programs work will benefit the reader greatly while reading
the text. As you can note from the length of the book, it does not cover a ton of topics
that you would eventually need to know before calling yourself a Java programmer. The
Further Reading section at the end of the book should give you some decent pointers on
what to pick up next.

For the curious, the book was typeset using Troff and its ms macr o set. The font family
used was Bookman.

Your questions, comments, criticism, encouragement and corrections are most welcome
and you can e-mail me at rhlbatra[aht]hotmail[dot]com. Ill try answering all on-topic
mails and will try to include suggestions, errors and omissions in future editions.

Rahul Batra (18th December 2013)



-4-

ABOUT THE AUTHOR

Rahul Batra was first introduced to programming in 1996 in GWBASIC, but he did
not seriously foray into it till 2001 when he started learning C++. Along the way, there
wer e dabblings in many other languages like C, Ruby, Perl and Java. His first book A

Primer on SQL was released in October 2012 and became very popular totalling over
15000 downloads in the first year.

Rahul has been programming professionally since 2006 and currently lives and works
in Gurgaon, India.



-5-

ACKNOWLEDGEMENTS

This text would not have been possible without the unwavering support of my fam-
ily and friends and I owe many thanks to them. My parents, who raised me and always
kept my education as the foremost priority, and without whose encouragement to pur-
sue my dreams I would not even have started this. My wife, Pria, who kept telling me to
get into Java and kept on believing that I could write.

I also owe my gratitude to my sister for always looking out for me. And finally many
thanks to my niece, newphew and friends for bring me such joy into my life.



-6-

LICENSING

Copyright (c) 2013 by Rahul Batra. This material may be distributed only subject to the
ter ms and conditions set forth in the Open Publication License, v1.0 or later (the latest
version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without
the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is
pr ohibited unless prior permission is obtained from the copyright holder.

All trademarks and trade names are the properties of their respective owners.

Open Publication License
v1.0, 8 June 1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

The Open Publication works may be repr oduced and distributed in whole or in part, in
any medium physical or electronic, provided that the terms of this license are adher ed
to, and that this license or an incorporation of it by refer ence (with any options elected
by the author(s) and/or publisher) is displayed in the repr oduction.

Pr oper for m for an incorporation by refer ence is as follows: Copyright (c) <year> by
<author’s name or designee>. This material may be distributed only subject to the
ter ms and conditions set forth in the Open Publication License, vX.Y or later (the latest
version is presently available at http://www.opencontent.org/openpub/).
The refer ence must be immediately followed with any options elected by the author(s)
and/or publisher of the document (see section VI).

Commer cial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall requir e the citation of the original
publisher and author. The publisher and author’s names shall appear on all outer sur-
faces of the book. On all outer surfaces of the book the original publisher’s name shall
be as large as the title of the work and cited as possessive with respect to the title.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee.

III. SCOPE OF LICENSE

The following license terms apply to all Open Publication works, unless otherwise
explicitly stated in the document.

Mer e aggr egation of Open Publication works or a portion of an Open Publication work
with other works or programs on the same media shall not cause this license to apply to
those other works. The aggregate work shall contain a notice specifying the inclusion of
the Open Publication material and appropriate copyright notice.



-7-

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdic-
tion, the remaining portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided "as is" without war-
ranty of any kind, express or implied, including, but not limited to, the implied war-
ranties of merchantability and fitness for a particular purpose or a warranty of non-
infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including translations,
anthologies, compilations and partial documents, must meet the following requir e-
ments: The modified version must be labeled as such.
The person making the modifications must be identified and the modifications dated.
Acknowledgement of the original author and publisher if applicable must be retained
accor ding to normal academic citation practices.
The location of the original unmodified document must be identified.
The original author’s (or authors’) name(s) may not be used to assert or imply endorse-
ment of the resulting document without the original author’s (or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requir ements of this license, it is requested from and strongly recom-
mended of redistributors that: If you are distributing Open Publication works on hard-
copy or CD-ROM, you provide email notification to the authors of your intent to redis-
tribute at least thirty days before your manuscript or media freeze, to give the authors
time to provide updated documents. This notification should describe modifications, if
any, made to the document. All substantive modifications (including deletions) be
either clearly marked up in the document or else described in an attachment to the doc-
ument. Finally, while it is not mandatory under this license, it is considered good form
to offer a free copy of any hardcopy and CD-ROM expression of an Open Publication-
licensed work to its author(s).

VI. LICENSE OPTIONS

The author(s) and/or publisher of an Open Publication-licensed document may elect
certain options by appending language to the refer ence to or copy of the license. These
options are consider ed part of the license instance and must be included with the
license (or its incorporation by refer ence) in derived works.

A. To prohibit distribution of substantively modified versions without the explicit per-
mission of the author(s). "Substantive modification" is defined as a change to the
semantic content of the document, and excludes mere changes in format or typographi-
cal corrections.

To accomplish this, add the phrase ’Distribution of substantively modified versions of
this document is prohibited without the explicit permission of the copyright holder.’ to
the license refer ence or copy.

B. To prohibit any publication of this work or derivative works in whole or in part in
standar d (paper) book form for commercial purposes unless prior permission is
obtained from the copyright holder.



-8-

To accomplish this, add the phrase ’Distribution of the work or derivative of the work in
any standard (paper) book form is prohibited unless prior permission is obtained from
the copyright holder.’ to the license refer ence or copy.



-9-

1. AN INTRODUCTION TO JAVA

1.1. What is Java?

To per form useful tasks on a computer, we either use a prebuilt software applica-
tion (like a text editor) or build one ourselves. This process of making software using
instructions that a computer can understand is called programming. The set of instruc-
tions given is called a program.

These instructions or programs must be given in a precise, formal language which is
referr ed to as a programming language. Java is one such programming language.

Befor e a program can be run, we requir e another program to translate the program
fr om the language we wrote in (say Java or Pascal) to a language the underlying hard-
war e understands, i.e. a machine language. While this is not a one step process, for
simplification we consider it as such. This program is called a compiler. Another class
of programs with similar goals is an interpreter, which translates program statements
dir ectly into actions without the need for compilation to a machine language. This is
also referr ed to as program execution.

Java uses both a compiler and an interpreter to execute its programs. In the first stage,
the Java compiler translates the program listing to a intermediate bytecode. This byte-
code is in the form of coded instructions a virtual hardwar e machine called the Java
Virtual Machine (JVM) understands. The Java interpreter then runs this bytecode
accor ding to the specification of this virtual computer of sorts (the JVM) and we have
our program execution.

1.2. Advantages of Java

Since Java is compiled to the JVM bytecode specification, it means that a Java
pr ogram will run on any architectur e or operating system where a Java interpreter
exists. This is differ ent fr om the typical execution flow of compiled languages like Pascal
or C, because their source code has to be recompiled to target whichever underlying
machine exists. The reason for this particular design choice was the fact that one of
Java’s original goals was to be the programming language for varied consumer devices,
not just personal computers. Since these devices would not be the ideal computational
machines for doing programming and compilation, the concept of a virtual machine to
run intermediate bytecode became necessary.

Java also uses a familiar C/C++ style syntax which is widely used. Java itself has
become one of the most popular languages since its inception in the mid-90s. The good
side effect is that there are a huge number of jobs, books and reusable code available
for the Java programmer.

1.3. Getting Java

When you go to download Java, you are faced with two variants of it: the Java
Development Kit (JDK) and the Java Runtime Environment (JRE). The former is
used by people wanting to write programs in Java whereas the latter by those who just



-10-

wish to run Java programs. Thus for the purpose of this book, we will be needing a
JDK.

The JDK itself comes in 3 editions.

Java SE Java Standard Edition

Java EE Java Enterprise Edition

Java ME Java Mobile Edition

We will be focussing on Java SE since the intended target machines for this edition is
personal computers. As of the date of this text, the current version of Java is Java 7 but
any version upwards of Java 6 should serve you fine. While the step-by-step installation
of Java SE for all the major operating systems is beyond the scope of this book, it is a
fairly simple procedur e much like the install process of any other package on your
choice of OS. You can download your copy of Java SE from the URL below.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Another thing you would need is a good text editor for editing Java source code. Choose
any editor that you are comfortable with, preferably one with syntax highlighting (col-
ors differ ent wor ds in source code with special meaning).

1.4. Writing your first Java program

The first program we are going to try out will simply print out the words "Hello
World!" on the screen. This is a common first program to teach and is a good way to
lear n about basic program structure. Fire up your editor and enter the text given below
saving the file as HelloWorld.java.

class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

Listing: the source code of our Hello World Program

Note the case (capitalization) of certain words in the program. Also note how we have
indented certain lines to give the appearance of a nested structure to our listing. While
such indentation is not necessary in Java (to a compiler), it is done for human readabil-
ity and is not considered optional by other programmers.

To run this program, we go through a two step process. Firstly we need to compile the
pr ogram using the Java compiler javac and then run it through the interpreter which is
called simply java. Look at the commands entered below alongwith the output of our
pr ogram shown on the last line. Run the same on a console (command prompt) using
your choice of directories and remember to save your program in the same directory.



-11-

d:\code\experiments\java> javac HelloWorld.java

d:\code\experiments\java> java HelloWorld

Hello World!

Figure: output of our Hello World program

If you enounter an error like ´javac is not recognized as an internal or external com-

mand´, you have probably not added your JDK bin dir ectory to your PA TH variable.
Check your OS manual or check online documentation on how to achieve this. If the
first step ran successfully, you would have a file name HelloWorld.class in your direc-
tory. Be careful not to include the .class extension when running the program through
the Java interpreter in step 2. If all goes well, you should see the text printed on the
command line. Congratulations!

1.5. Analyzing your first program

A full explaination of all the components of this program listing goes beyond the
scope of this chapter. For now it is important to study it as a taste of what Java pro-
grams look like. The first line declares the title of the program as HelloWorld and this
must be done in the same casing (uppercase and lowercase) as the name of your .java

file.

The second line declares the main, which is where the program starts running. Notice
how this is within the program title’s curly braces. It also has its own set of curly
braces, and within it we encounter the line which actually produces our desired output.
The println is a way to tell Java to output something on the screen. We ter minated this
line with a semicolon and finally wrapped up our code listing with the closing curly
braces which we had opened before.

Syntactically Java resembles the C/C++ family of programming languages. It is from
them that it gets the concept of terminating a statement with a semicolon. Nesting of
curly braces define heirarchy and a set of curly braces are used to combine multiple
statements into a block. A pr ogram ter minates when the last statement of the main

completes its execution.



-12-

2. DATA TYPES AND VARIABLES

Computers are data processing machines. Their operations revolve around trans-
for ming data into meaningful information. For a programming language like Java to be
able to act as a medium for such a transformation, it must understand how to work
with differ ent kinds of data.

2.1. Literals

Any data that you enter directly into your code is called a literal. That means that
in our first program, the bunch of characters "Hello World!" was a character literal. Lit-
erals can also be numeric in nature.

The point of a literal is to give a formal name to data that you enter into the source code
of the program, without it becoming a part of the vocabulary of Java as a programming
language.

2.2. Variables

A variable is a container for data. We assign a purposeful name to some data that
we wish to refer to in other statements of our program, and this binding of data to a
name is called variable assignment. Consider the variable assignments given below.

a = 10
firstName = "Alan"
lastName = "Turing"
amount = 103.55

Listing: Some variable assignments

It should be noted that the above are not valid statements in Java. However, these
pseudo code statements illustrate the concept of variables nicely. While the first vari-
able name ’a’ is not descriptive, we can see that it refers to a numeric value. The other
variable names are mor e purposeful and store characters and even numbers with a dec-
imal point in them. What would make these valid Java statements is a few syntactic
rules and the important declaration of what is the type of data the variable will store.

2.3. Data Types

A type is a way to tie together the data of a program to the actual storage details of
such data. The Java compiler must know what kind of data it will be dealing with for
every variable. This way it will be able to allocate the correct amount of memory to store
such variables. And so we have to explicitly declare our variables with data types in
Java.

Java has numeric data types like (int, float, long etc.), character (char) data type and a
special type called boolean which only stores true or false values. To illustrate all these
concepts better, we will now look at a program incorporating variables to calculate sim-
ple interest given the rate of interest, time period and the principal amount.



-13-

class SimpleInterest {
public static void main(String[] args) {

/* Simple Interest Program
SI = P * R * T
P: Principal Amount
R: Rate of Interest
T: Time Period

*/

float amount = 100f;
float rate = 0.06f; //Interest is 6%
int timePeriod = 2; //Assuming 2 years

float simpleInterest = amount * rate * timePeriod;

System.out.println("Interest: " + simpleInterest);
}

}

Listing: Calculating simple interest using numeric variables

The program presents many interesting and hitherto unknown facets of Java. The first
being the use of comments in the program to convey some meaningful information to
the reader of the source code. The Java compiler and interpreter suitably ignore com-
ments. There are two ways to write comments in your program. Multi-line comments
start with /* and end with */. Single line comments start with // and continue till the
end of the present line.

The basic structure of our program remains the same. We define the title of our pro-
gram on the first line followed by the main method. In here we define our three variables
- amount, rate and timePeriod. Notice that the data type for the first two is float signify-
ing that these are floating point numbers, i.e. numbers with a decimal point. Such
numbers are written with a suffix of f to their literal values. The timePeriod variable is
declar ed as an int, which stores whole numbers without any decimal point. Here we are
assuming that this variable’s value can never be a fractional number. Such decisions on
which data type to pick for a computation variable are a regular part of a programmer’s
job.

Our comments at the top specify the formula we are going to use to calculate the simple
inter est. It is a good idea to note down such details along with the purpose of a block of
code for readability purposes. Since we are dealing with the multiplication of floating
point numbers, it makes sense to store the result also in a float. We multiply our three
input variables using the multiply operator *. We then print out the result using
println. Run this program using the same two step procedur e we used in the last chap-
ter and you should see the output as given below.

Interest: 12.0

You would notice that we used another operator, namely +. This concatenated the word
’Inter est:’ with our result. However the same operator when used for numeric data types
per forms an addition. Thus we deduce that operators are context sensitive to the data
types they are working upon.



-14-

3. INTRODUCING CLASSES & OBJECTS

3.1. Abstraction

A computer is a complex electronic machine. At its heart is a micropr ocessor that
per forms the computation. The data for a computation is composed of strings of 1s and
0s. Electronically these states of 1s and 0s are repr esented by current pulses. But to
per form everyday tasks on a computer like word processing or sending emails, you do
not have to know the details of the entire machine or network. This hiding of unneces-
sary details is called abstraction.

Abstraction is a powerful programming concept too. The computer does not understand
dir ectly what you wish to do when you say something along the lines of Sys-
tem.out.println(). This has to be translated through a series of steps to instruc-
tions that would get you the output. Thus programming languages like Java are medi-
ums of expressions providing us with the necessary level of abstraction to solve a prob-
lem.

3.2. Defining classes and objects

In the previous chapter we saw data types and variables combining to give us the
ability to hold literal values. When you think about it, this is nothing but an abstraction
of storing a value at a memory location with the variable name being a way to access
this memory location. The data types we saw were simple and are called primitive data

types.

But what if the kind of data you wish to hold cannot be repr esented elegantly by the
primitive types? For example a date can be thought of as a combination of 3 integer
types, one each for day, month and year. If programming is all about defining a series of
abstractions and operations on data, it is important that our data be repr esented closer
to its true meaning. Like a date being manipulated as a date rather than independantly
as a set of 3 numbers. Such composite variables are called objects and their type is
called a class.

We said previously that the type of a variable determines what operations are valid on
it. Since with classes we are creating new data types, we have to define a set of valid
operations on them. A class thus becomes a combination of data types and the opera-
tions that are applicable on this new data type. An object becomes a variable of a class
and is said to be an instance of its class.

The type variables which form the data being repr esented in the class are called the
data members or member variables or simply members. In the date example, the three
integers to repr esent day, month and year are the members of that class. The opera-
tions defined for a class are called its methods.



-15-

3.3. Creating a class in Java

We will pick up the example discussed in the previous section as an example for
cr eating our own version of a date class in Java.

class MyDate {

// Member variables
int day;
int month;
int year;

// Methods

// Initializes members to some value
void initDate() {

day = 10;
month = 12;
year = 1815;

}

// Display the value stored
void displayDate() {

System.out.println(day + "/" + month + "/" + year);
}

}

Listing: Our class for a simple date object

Save this file as MyDate.java. Notice that we have some member variables in there
(day, month, year) and two methods (initDate, displayDate) but no main method. What
this file (more appr opriately class) stores is attributes for a simple date data type and
some simple functionality to set and display the date.

Note: The astute reader will no doubt be interested with the date chosen - 10th of

December, 1815. This happens to be the birthdate of Lady Ada of Lovelace. She is con-

sidered to be the world’s first programmer. For more infor mation read her biography

’Ada, the Enchantress of Numbers’ by Betty A Toole [1998, Strawberry Press].

Since execution starts in the main method, we will create a separate file which will cre-
ate an object of the MyDate class and call its methods. Let us call this file DateRun-
ner.java and the code for it is given below.



-16-

class DateRunner {
public static void main(String[] args) {

//Create a MyDate object
MyDate ada;
ada = new MyDate();

ada.initDate();
ada.displayDate();

}
}

Listing: DateRunner class containing main

We will now compile both these source files using javac as shown below.

javac MyDate.java DateRunner.java

The next step is to run the application using the java interpr eter. Remember that only
the DateRunner class contains the main method. It is the responsibility of this class to
invoke other classes by creating their objects. Thus we run only the DateRunner

thr ough the interpreter to get our output.

java DateRunner
=> 10/12/1815



-17-

4. CONDITIONAL STATEMENTS

Making decisions are a fundamental part of programming. There are numer ous
conditional constructs available in Java to alter the flow of a program based upon a
decision outcome you decide upon. To arrive at such an outcome, one has to first per-
for m a comparison operation.

4.1. Comparison Operators

The comparison operators of Java are not that differ ent fr om other programming
languages you may have come across, or even elementary mathematics. For example, a
gr eater-than operator is given a symbol of > and it checks if the value on the left hand
side expression is greater than that of the right hand side. These operators retur n a true

or false value. Thus it makes sense to store the result of such a comparison as a bool-
ean variable.

Refer to the table given below for a detailed listing of the comparison operators avail-
able.

Operator Description
> Retur ns true if the left operand is greater than the right operand
< Retur ns true if the right operand is greater than the left operand
== Returns true if the right operand is equal to the left operand
!= Returns true if the right operand is not equal to the left operand
>= Returns true if the left operand is greater than or equal to the right operand
<= Returns true if the right operand is greater than or equal to the left operand

4.2. If-Else Conditional

A simple conditional construct in Java is an if-else statement. If a condition is
met, the block following the if is executed, otherwise the one following else is executed.
A general syntax for this construct is given below.

if (<condition>) {
<Execute statements here if condition is met>
}

else {
<Else execute these statements>
}

Figure: the general syntax of an if-else statement

It should be noted that it is optional to have an else clause following an if. You can
even omit the curly braces signifying block boundaries if you have to only execute one
statement if a condition is met. However in the interest of readability, it is wise not to
omit them. Let us see an example using the this conditional statement.



-18-

int temperature = 102;
String state;

if (temperature < 0) {
state = "Solid Ice";

}
else if (temperature > 100) {

state = "Vapour";
}
else {

state = "Liquid Water";
}

System.out.println (state);

Listing: Using an if-else clause to change program output

In the example given above, we change our output to the state of water given its tem-
peratur e in degrees celsius. Notice that we have also introduced an else if clause to
deter mine whether the temperature is suf ficiently high enough to turn water to vapour.
Feel free to modify the value of the temperature variable to see the change in output.

4.3. Switch Conditionals

A switch conditional is a multi-way selection statement. If your if-else clause is
becoming too unwieldy, it is a good idea to consider using a switch in its place. As an
example, suppose we wish to simulate the operations on an ATM machine by allowing
the inputs to be characters which are bound to particular action. Our specification is as
given below.

D Deposit amount

W Withdraw amount

B Check balance

M Print a Mini-Statement

Tur ning this into an if-else construct becomes needlessly verbose.



-19-

char choice;
...

if (choice == ’D’) {
System.out.println("Deposit an amount");

}
else if (choice == ’W’) {

System.out.println("Withdraw an amount");
}
else if (choice == ’B’) {

System.out.println("Check Balance");
}
else if (choice == ’M’) {

System.out.println("Print a Mini Statement");
}
else {

System.out.println("Wrong choice");
}

Listing: our ATM action specification modelled using if-else

We can use a switch her e to make our code shorter without losing any details.

char choice;
...

switch (choice) {
case ’D’: System.out.println("Deposit an amount");

break;
case ’W’: System.out.println("Withdraw an amount");

break;
case ’B’: System.out.println("Check Balance");

break;
case ’M’: System.out.println("Deposit an amount");

break;
default : System.out.println("Wrong choice");

}

Listing: our ATM action specification modelled using switch

Notice the use of the break statement after each case. This causes the execution to
jump to the end of the switch. A break is optional, but if it is missing, execution contin-
ues to the following case statements till a break is enountered. The default statement
executes if no match is encountered.

Fr om the data types we have seen until now, a switch would typically operate upon
characters and integers. With the release of Java 7, it now supports String objects for
comparison.



-20-

5. ITERATION STATEMENTS

An iteration or loop repeats a statement or a block of statements till the point an
entry condition is satisfied. It saves us from the tedium of writing similar statements
again and again by giving us constructs that allow us to acheieve the same result in a
compact manner. Java has three main iteration constructs: while, do-while and for.

5.1. The while loop

The while loop is a simple iteration construct which first tests a boolean condition
and if true, executes a block of statements. The general syntax of a while loop construct
is given below.

while (<boolean expression>) {
// statements

}

Figure: general syntax of a while loop

First the boolean expression is evaluated. If it results in a false value, the execution
jumps straight to the end of the block and executes the first statement after the block.
However if the expression evaluates to a true value, the body of the block is executed
and then the expression is reevaluated. This cycle (of evaluation and then block execu-
tion) continues till the boolean expression remains true. Let us use this construct to
find the sum of the first twenty(20) natural numbers.

public class WhileLoop {
public static void main(String[] args) {

int ctr = 1;
int sum = 0;

while(ctr <= 20) {
sum += ctr;
ctr++;

}

System.out.println("Sum: " + sum);
}

}

Listing: a program to find the sum of the first 20 natural numbers using a while construct

Note the entry condition of the while loop and it’s execution block contents. We start
our counter from 1 (the first natural number) and the block will be executed till the
counter remains less than 20 or equal to 20. In the execution block, we increment the
counter with the ++ operator which adds 1 to the value of the variable.



-21-

5.2. The do-while loop

This construct is similar to the while loop with one differ ence. The boolean expres-
sion which forms the conditional part of the loop is written at the end, thus ensuring
that the loop will execute atleast once.

do {
// statements

} while (<boolean expression>);

Figure: general syntax of a do-while loop

5.3. The for loop

A for loop consists of three parts - initialization, condition and step. Her e the vari-
able doing the counting is initialized as a part of the construct itself. At the end of each
iteration, stepping (increment/decrement) is done followed by checking of the condition.

for(<initialization>; <boolean condition>; <step>) {
// statements

}

Figure: general syntax of the for loop construct

To understand this construct better, let us rewrite our previous example of finding the
sum of the first 20 natural numbers using a for loop.

public class ForLoop {
public static void main(String[] args) {

int sum = 0;

for(int ctr = 1; ctr <= 20; ctr++ ) {
sum += ctr;

}

System.out.println("Sum: " + sum);
}

}

Listing: usage of the for loop construct

In the example above, both the initialization of the ctr variable and its increment are a
part of the for loop definition. The output is the same as we achieved using the while

loop, but this version was shorter. It is a matter of personal prefer ence and judgement
on the kind of problem presented which would ultimately decide which loop construct
one picks.



-22-

5.4. break and continue

We have already seen break when we were discussing the switch statement. In
this section, we will talk about break and continue in more detail for their usefulness
as loop flow controllers.

Both these statements are used for jumps in execution flow of a loop block. A break

exits the loop block without executing the remaining statements. On the other hand, a
continue stops the execution of the current iteration only. Execution again picks up
fr om the next iteration. To clarify these flow jumps, let us look at an example.

int ctr = 0;
int sum = 0;

while(true) {
ctr++;

if (ctr == 20)
break;

if ((ctr % 2) == 0)
continue;

sum = sum + ctr;
}

System.out.println("Odd sum: " + sum);

Listing: using flow jump constructs

The objective of this program is a little differ ent than the previous ones. It will print out
the sum of only odd natural numbers below 20. Note that while this might not be the
best way to achieve our objective, it does show a few interesting things. First, note how
we used the while loop entry condition. The use of true ensur es that the loop will run
for ever unless we explicitly break out of it. This is exactly what we do if we see that our
counter is equal to 20. Another thing to note here is that an if conditional does not need
curly braces for its block if there is only one statement to execute. In this case, it is a
break.

Since we are only concerned with odd numbers, we do a continue befor e we increment
the sum variable. This ensures that the next iteration starts but the even counter value
is not included in the sum.



-23-

6. ARRAYS

An array is a set of variables of the same data type. Let’s say you wish to store a
the first 10 odd numbers. To associate the list of these with variables you can either as-
sociate each one with its own separate variable name - oddNum1, oddNum2, oddNum3

and so on, or you can store them all in a single array. Each of these numbers become
an array element.

6.1. Array Initialization

Arrays can be declared using the indexing operator denoted as []. This is to be
placed either after the data type identifier of the array or its variable name. The follow-
ing two declarations of an integer array are equivalent.

int[] oddNums;
int oddNums[];

While the latter declaration might be familiar to C/C++ programmers, in this text we
would adopt the former style. I believe it is clearer in indicating the type of the variable
as an array of integers.

The declarations that we saw above just associate the variable identifier with the type of
an array. It does not allocate any storage in memory for an array. To do that we write an
array definition using the new keywor d.

int[] oddNums = new int[10];

When using the new keywor d to declare an array, you must specify the number of ele-
ments in the array by writing it within [ and ]. Each element of the array is given an
initial value depending upon the type of the array. For numeric types like in the exam-
ple above, the value assigned is 0 (zero).

We can also initialize values for arrays at the time of creation using curly braces { }.
Each value is placed between these separated by a comma. To clarify this, let us look at
an example below.

String[] designCommittee = { "Backus", "Bauer", "Bottenbruch", "Katz",
"Perlis", "Rutishauser", "Samelson", "Wegstein" };

We initialize an array called designCommittee of type String. Though we have not dis-
cussed this type yet, for the time being think of it as a data type holding words or a
bunch of characters as a single entity. Thus, our variable is a String type array with 8
elements as initialized. Note that we did not have to use the new keywor d.

For the curious, the names chosen as values for the designCommittee array are the

members of the Algol 58 programming language design committee. Their decisions

impacted programming languages for decades to come. Java itself is considered a

descendant of the Algol family syntax style.



-24-

6.2. Using Arrays

To stor e values at an array location we simply write the element number, also
known as an index or subscript in between the square brackets [] immediately follow-
ing the array variable name. In Java, array indexes begin at 0 (zero). This means that
the first element is stored at index 0, the second at index 1 and so on. Let us look at an
example to clarify our concepts regar ding the usage of arrays.

public class OddNumbers {
public static void main (String[] args) {

// Initialize a 10 element array
int[]oddNums = new int[10];

// Will will go through the loop 10 times
for(int ctr = 0; ctr < oddNums.length; ctr++) {

oddNums[ctr] = (ctr * 2) + 1;
}

System.out.println("Last element: " + oddNums[oddNums.length -
1]);

}
}

Listing: using arrays to store odd numbers

When you execute this program, you would see an output like Last element: 19. So
what actually happened in the program? We declar ed an integer array of 10 elements
called oddNums. The expression <arrayname>.length provides you with the length of
the array, which in this case would be 10. Array indexes are integers, but you can spec-
ify expressions whose output is an integer too.

To find 10 (the length of our array) odd numbers, we initialize a counter to iterate with
and initialize it to 0. The Nth odd number can be calculated simply by the formula,

Nth odd number = ((N - 1) x 2) + 1

Since array indexing starts at 0 which also is out initial counter (ctr) value, this formula
can be reduced simply to

(ctr * 2) + 1

Finally we print out the last element of our array by calculating its index using odd-

Nums.length - 1.

6.3. The enhanced for loop

The enhanced for or for-each loop was added in Java version 5, to iterate over
arrays and other composite types which we will discuss later. The 3-part for loop, also
called the C-style for loop, is somewhat verbose when you want to simply iterate over
the array. Let us see an example of each of these constructs and compare the differ ence



-25-

in their syntactical clarity.

public class ForOld {
public static void main (String[] args) {
String[] designCommittee = { "Backus", "Bauer", "Bottenbruch",

"Katz", "Perlis", "Rutishauser", "Samelson", "Wegstein" };

for (int ctr = 0; ctr < designCommittee.length; ctr++) {
System.out.println(designCommittee[ctr]);

}
}

}

Listing: Using the C-style for loop

The objective of the program is fairly simple. It creates a String type array and then iter-
ates over it, printing out the element values. We initialize our counter variable to
achieve this iteration, check whether our counter has not yet reached the end of the
array (using length) and increment the counter in each iteration. The same can be
achieved using the enhanced for loop as below.

public class ForNew {
public static void main (String[] args) {
String[] designCommittee = { "Backus", "Bauer", "Bottenbruch",

"Katz", "Perlis", "Rutishauser", "Samelson", "Wegstein" };

for (String committeeMember : designCommittee) {
System.out.println(committeeMember);

}
}

}

Listing: using the enhanced for loop

Note the structure of the for loop in this case. Our iteration loop has been reduced to
the general structure:

for (<type> <variable> : <collection>)

We can then count on using the variable identifier (committeeMember) inside the loop
block without using array subscripts.



-26-

7. METHODS

In chapter 3, we were intr oduced to classes and objects. But we haven’t been truly
doing object oriented programming. We will now begin to explore in ear nest, objects and
their fundamental building blocks - methods.

Recall that a method is an operation of a class. The concept is closely related to a pro-

cedure or function which is a block of statements perfor ming a task. A method however
is always declared inside a class. The general syntax of a method is given below.

AccessModifier ReturnType MethodName (optional parameter list) {
. . .
}

Figure: general syntax of a method

The access modifier controls the visibility of a method, giving the programmer control
over where all a method can be called from. We will be going over this concept a bit
later. The retur n type is the data type of the retur n value. Think of it as a result or out-
put of the computation done in the method. The inputs to the method are its Theparam-

eters. method signature.

7.1. Parameters & Retur n Values

Let us begin by rewriting our simple interest calculation as a separate method,
rather than putting everything in main.

public class SimpleInterest {

// Member variables
float amount;
float rate;
int timePeriod;

// Methods
public void initValues (float principal, float rateOfInterest, int

numOfYears) {
this.amount = principal;
this.rate = rateOfInterest;
this.timePeriod = numOfYears;

}

public float calcInterest() {
float simpleInterest = amount * rate * timePeriod;
return simpleInterest;

}
}

Listing: the class for calculating simple interest on an amount

We create a class called SimpleInterest which does not contain the main method. But
what it does contain are methods to initialize values needed to calculate the simple



-27-

inter est and the calculation method. We intend to create a separate runner class which
would create an object of SimpleInterest and then call its methods.

public class InterestCalculator {
public static void main(String[] args) {

SimpleInterest applicant = new SimpleInterest();
applicant.initValues(100f, 0.06f, 2);

float amountReturned = 100f + applicant.calcInterest();
System.out.println("Amount after time period: " + amountRe-

turned);
}

}

Listing: the runner class containing main

We create an object of the class SimpleInterest and initialize its member values by pass-
ing arguments in the method call - initValues. These arguments of the method call
pass their values onto the parameters in the method signature.

We also see that our method calcInterest retur ns a float value. Thus in the method defi-
nition we explicitly state that it will do so, in contrast to initValues which does not
retur n anything. Recall from the general syntax of a method definition that the second
modifier tells the type of value a method retur ns. A method that has only side effects
without a retur n value, is declared as void.

Inside a method definition, we use this as to refer to the calling object. It is commonly
used to access the member variables of a class. In our initValues method, we used this

to differ entiate between the parameters and the instance (member) variables. While the
names of the two kinds of variables are dif ferent in this case, they can have the same
name, making the use of this essential.

7.2. Constructors

A constructor is a special method that is called when an object is created using
new. It has the same name as the class it is contained in and does not have a retur n
type. The purpose of a constructor is to perfor m some initializations like setting values
of some instance variables.

When we do not write a constructor, as we haven’t until now, Java automatically cre-
ates a no argument constructor which is invoked when an object is created. In our pre-
vious example, consider the SimpleInterest class with the initValues method. We can
replace this explicit call to a method by creating our own constructor. This makes sense
because the purpose of initValues is close to the charter of responsibilities of a con-
structor.



-28-

public SimpleInterest (float principal, float rateOfInterest, int
numOfYears) {

this.amount = principal;
this.rate = rateOfInterest;
this.timePeriod = numOfYears;

}

Listing: the SimpleInterest constructor

Our runner class InterestCalculator still makes a refer ence to a no-argument construc-
tor and the initValues method. We modify both these lines by removing the line calling
initValues altogether and changing the object creation line to the following.

SimpleInterest applicant = new SimpleInterest(100f, 0.06f, 2);

Our program now compiles and runs as before.



-29-

8. INHERITANCE

Inheritance is the process by which we model entities in our problem domain as a
hierar chy to lead us to a more conceptually elegant solution structure. This definition is
a bit heavy, so we attempt to simplify it. Think of it as creating parent and child classes

wher e it makes sense to do so.

Consider a class called Employee. A company may wish to differ entiate between hourly
wage employees and full time employees. The solution to model this hierarchy is two
make two child classes of Employee, namely HourlyEmployee and FullT imeEmployee.
The common behavior (like all employees have a name) between them can be shared by
defining it in the Employee class. This is called the base class. The other two classes
which inherit the properties and behaviors from the base class are called the derived
classes.

8.1. Extending a class

To create a subclass from an existing class, we use the extends keywor d in Java.
We can add or modify properties and behavior of existing classes, which keeps redun-
dancy to a minimum.

public class <child-class> extends <parent-class> {
. . .
}

Figure: general syntax for extending a class

Keep in mind that while a class can have multiple child classes, a class cannot have
multiple parents in Java. It is however possible for a child class to act as a parent of
another class. Let us now see an example of inheritance in Java.

public class Interest {

// Member variables
float amount;
float rate;
int timePeriod;

public float calcInterest() {
return 1.0f;

}
}

Listing: the base class - Interest



-30-

public class SimpleInterest extends Interest {

// Methods
public SimpleInterest (float principal, float rateOfInterest, int

numOfYears) {
this.amount = principal;
this.rate = rateOfInterest;
this.timePeriod = numOfYears;

}

public float calcInterest() {
float simpleInterest = amount * rate * timePeriod;
return simpleInterest;

}
}

Listing: the derived class - SimpleInterest

Note that in SimpleInterest, we did not redefine the member variables but used them
dir ectly in our constructor for SimpleInterest. We did however, create a more specialized
version of the calcInterest() method in the subclass. Our task now is to create a suitable
runner class containing the main method to test our classes.

public class InterestCalculator {
public static void main(String[] args) {

SimpleInterest applicant = new SimpleInterest(100f, 0.06f, 2);

float amountReturned = 100f + applicant.calcInterest();
System.out.println("Amount after time period: " + amountRe-

turned);
}

}

Listing: calculating the simple interest using the derived class

A useful feature given to us is that while creating an object we can specify its type as its
par ent class. This makes sense because the object, regar dless of which child class it
instantiates, would atleast have the behavior (think method) of its parent. Thus while
cr eating the applicant object, we can use the statement below.

Interest applicant = new SimpleInterest(100f, 0.06f, 2);

8.2. Access Specifiers

An access specifier controls the access and visibility of its member. The member
her e means a class member field or a class method. There are thr ee access specifiers
available in Java, namely public, private and protected. You have already used the
public access specifier for the classes you have been writing so far.

A member designated as private can only be accessed by a method of its own class. A
public member however can be accessed by any member of any class. A good general
rule is to mark your member variables private and methods public unless the method is



-31-

only meant to be used internally by other methods of the class. Good programming
principles encourage us to use methods to read and update member variables through
public methods called BI getters and setters respectively. This allows us the flexibility to
impose sensible restrictions on the values that a member can take.

private float principal;

public float getPrincipal () {
return principal;

}

public void setPrincipal (float deposit) {
if ( deposit < 0 ) {

System.out.println("No negatives allowed");
System.exit(0);

}
else {

principal = deposit;
}

}

Listing: getter and setter for principal

With respect to inheritance, access specifiers play a special part. Private members are
not interited whereas public members are inherited.

8.3. The super Keyword

We have seen creating methods with the same name in the inherited subclasses,
ef fectively overriding the super class version of it. The super keywor d allows us to
invoke the methods of the super class in the subclass. This is useful when the method
in the derived class has just some additions to make to the existing computation in the
par ent class method.



-32-

class Cylinder {
protected float radius;
private float height;

public Cylinder (float r, float h) {
this.radius = r;
this.height = h;

}

public float surfaceArea() {
float sa = 2 * 3.14159f * radius * height;
return sa;

}
}

class Can extends Cylinder {
public Can (float r, float h) {

super(r, h);
}

public float surfaceArea() {
float sa = super.surfaceArea() + (2 * 3.14159f * radius *

radius);
return sa;

}
}

public class SurfaceAreaRunner {
public static void main(String[] args) {

Can myCan = new Can(2.0f, 10.0f);
System.out.println("Surface Area: " + myCan.surfaceArea());

}
}

Listing: Using the super keyword to refer to the superclass members

The example above makes a Can class as a derived class of Cylinder. A can, we assume
is a cylinder covered with both sides. It’s surface area thus being the area of its cylinder
and twice the area of any one of its (two) covers.

We use the super keywor d twice here. Once when we calculate the surface area of the
can, where we add the surface area of its covers to the already defined surface area of
its cylinder. The other is when we call the super class constructor using simply super().
Though we did not add anything in the derived class constructor we could have kept
some checks (like radius and height cannot be negative) and then called the super class
constructor. Another point to note is the use of access specifiers for radius and height.
The radius is given a specifier protected so that it behaves like a private member with
one exception, that it is accessible to subclasses. We need it in this case because the
subclass would calculate the surface area using it. The height on the other hand can
remain private since the subclass does not need it for it’s computations.



-33-

9. ABSTRACT CLASSES AND INTERFACES

9.1. Abstract Classes

While making inheritance hierarchies, we sometimes come across a case where it
does not make sense to allow a superclass to be instantiated, i.e. have objects of their
type. For example we should not allow instantiation of a superclass called SpaceCraft

but derived classes like Starship or Battlestar should allow object creation. Without
fleshing out the details of a space ship, which in this case is only possible in the child
classes, it makes little sense to have a concrete implementation for it.

Such classes are ter med as abstract classes and are useful only to serve as a template
or contract by which all its derived classes must adhere to. Their utility is derived by
their extension. Since they serve as blueprints, these classes must have at least one
abstract method, which are simply methods without any implementation details. They
only contain the method name and their argument list.

We declar e a class or method to be abstract by prepending the keyword abstract to the
method or class name.

abstract class SpaceShip {
void turnOnIgnition {

// Some code
}

abstract void takeEvasiveManeuver(String direction);
}

Listing: an abstract class containing an abstract method

The abstract class SpaceShip contains a concrete method - tur nOnIgnition(). This
means that the implementation of this method is also fleshed out in this class unlike
the abstract method - takeEvasiveManeuver(). Whether we override the concrete
method is upto us, but we must give a implementation to the abstract method in our
subclass.

9.2. Interfaces

An inter face is like an abstract class containing only abstract methods. It’s pur-
pose is to serve as a pure blueprint for other classes and contains no implementation
details. Classes implement an interface(s) rather than extending it. We declar e an inter-
face using the interface keywor d and listing the method signatures with no implementa-
tions.

interface Interest {
float getFinalAmount(float principal);
void calcInterest ();

}

List: creating the Interest interface



-34-

We can now create a class SimpleInterest which will implement the Interest inter face,
meaning it will provide the implementation of both the methods listed in the interface.

class SimpleInterest implements Interest {

// Member variables
float amount;
float rate;
int timePeriod;
float simpleInterest;

// Methods
public SimpleInterest (float principal, float rateOfInterest, int

numOfYears) {
this.amount = principal;
this.rate = rateOfInterest;
this.timePeriod = numOfYears;

}

public void calcInterest() {
this.simpleInterest = amount * rate * timePeriod;

}

public float getFinalAmount(float principal) {
float finalAmount = principal + this.simpleInterest;
return finalAmount;

}
}

Listing: implementing the Interest interface

We can now create an object of the type Interface to instantiate SimpleInterest because
the latter implements the former and it would satisfy the contract of its parent, just like
in parent classes.

public class InterestRunner {
public static void main(String[] args) {

Interest savings = new SimpleInterest (100f, 0.08f, 2);
savings.calcInterest();
System.out.println(savings.getFinalAmount(100f));

}
}

Listing: using the implemented interface as a type

9.3. Multiple Inheritance and Interfaces

Multiple inheritance occurs when a derived class inherits its members from two or
mor e super classes. It can potentially lead to ambiguity when the derived class is sup-
posed to inherit a behavior defined differ ently in both its super classes. Whose behavior
would get prefer ence? The designers of Java thought that multiple inheritance was
mor e tr ouble than its worth and thus decided to remove it from the language.



-35-

They did this by allowing a class to extend one and only one super class. But if you
wanted to adhere to multiple contracts, how would you achieve this? By interfaces.
While you are allowed to derive from only one parent class, even if it is abstract, you
can implement as many interfaces as you want.

class TravelGuide extends Guide implements HotelList, RestaurantList {
}

Listing: Implementing multiple interfaces



-36-

10. EXCEPTION HANDLING

Err or handling is an important part of programming. Errors can be generated at
compile time, like when you invoke javac, or at run time like when you try diving by
zer o. In Java, an abnormal condition at run time is called an exception. Syntactical
err ors like missing a semicolon are caught at compile time by the Java compiler and it
does not let you proceed further till you fix those errors. Run time exceptions are usu-
ally logical in nature.

We make our programs reliable by writing exception handling code. The Java compiler
enfor ces certain exception handling. Also we do not need to write the handling part
exactly where the error occurred, but this can be separated out to ensure code flow
readability. For this we need to be able to throw our exceptions to the handler.

10.1. The try-catch block

A try-catch block enables exception handling. Any code that may throw an excep-
tion is placed inside the try block and the catch takes remedial action if possible. Con-
sider a trivial division program as given below.

class ExceptionalCalc {
public static void main (String[] args) {

int numerator = 10;
int denominator = 0;

int result = numerator / denominator;
System.out.println(result);

}
}

Listing: a simple exception generating program

Even before we run this program, our mathematical senses tell us that unless the com-
puter (or more specifically, the Java interpreter) can repr esent infinity on a monitor, we
should be seeing an exception.

Exception in thread "main" java.lang.ArithmeticException: / by zero
at ExceptionalCalc.main(ExceptionalCalc.java:6)

Figure: output showing the divide by zero exception

We now introduce a try-catch block in this program to gracefully handle this exception.
Note that it is the calculation of the result that throws the exception, so it makes sense
to put it in a try block. We should also keep a note of the type of exception thrown, in
this case being ArithmeticException, so that we can introduce it in the catch type.



-37-

class ExceptionalCalc {
public static void main (String[] args) {

int numerator = 10;
int denominator = 0;

try {
int result = numerator / denominator;
System.out.println(result);

}
catch (ArithmeticException e) {

System.out.println("I have caught an exception");
}

}
}

Listing: the same program with exception handling added

When we run this program, instead of a (not so) cryptic error message, we get the string
we printed in our catch clause. Here we only gave a simple output indicating to the user
that we saw an exception being raised. However in some cases it is possible to take
remedial action provided we understand the exception raised and how to handle it.

10.2. Java Exception Classes

You might have noticed that we gave the type of exception being handled as an
input to the catch clause. Are ther e other exception type? Yes, in fact Exception is a
class type and there are many specialized derived class types from it. Let’s see what
happens when we change the type of exception caught to this superclass.

catch (Exception e) {
. . .

}

When we run this source code, we get the same output as before. This is in line with
our thinking that the ArithmeticException type is nothing but a specialisation of the
super type Exception. A general rule of thumb however, is to use as specific an excep-
tion type as possible. You don’t want to take remedial actions thinking something went
wr ong with a calculation when the arguments supplied are less than expected. We can
even give multiple catch clauses for a single try block to be able to handle multiple
kinds of exceptions.

10.3. The finally statement

You will frequently see or create code that will have multiple catch clauses and
some statements following that. But what if there are a particular set of statements you
always wish to execute. Any following statements after the catch clauses may not run if
you haven’t caught the particular type of exception thrown. But if there is some critical
operation you must perfor m befor e you abort out of your program? This is where the
finally statement comes in.



-38-

A finally statement defines a block of code that will execute after a try, regar dless of
how the exception handling went. A good example of what should go in a finally block is
closing of any open files.

try {
// Some vulnerable code

} catch (Exception1 e) {
// How to handle Exception1

} catch (Exception2 e) {
// How to handle Exception2

} finally {
// This will always execute

}

Listing: the general syntax of a finally statement



-39-

FURTHER READING

This book is only meant as a short introduction to the Java programming lan-
guage. It is by no means an exaustive refer ence on the same. I can only hope that read-
ing this text will prepar e you well for reading intermediate level books or atleast ease
your passage into books that requir e some programming know-how beforehand. Below
is a list of recommended books that should help you further your Java knowledge.

1) Head First Java by Kathy Sierra and Bert Bates (2nd Edition, 2005)

Graphical, readable and humorous introduction to Java programming which lays a lot
of emphasis on exercises.

2) Thinking in Java by Bruce Eckel (4th Edition, 2006)

A thor ough and well written introduction to Java and its object oriented nature. Great
theor etical explainations.

3) Lear ning Java by Patrick Niemeyer and Daniel Leuck (4th Edition, 2013)

Advanced introduction to Java for programmers familiar with other languages. Well
written and exaustive.



-40-

APPENDIX: Code Editors and Integrated Development Environments

Ther e ar e many text editors, both free and paid, available for Java programming
today. An Integrated Development Environment (IDE) facilitates faster development by
supporting many language specific features, but I would not recommend these in your
initial learning phase. This is because of their overly assistive nature which might result
in a weakened learning foundation and their own added complexity. Below are some of
the editors and IDE’s I have used over the years and found useful.

1) EditPlus (ES-Computing)

Lightweight but well polished text editor with many features. Mature and commercial.
http://www.editplus.com

2) Vim (Bram Moolenaar)

Power ful, multi-platfor m editor with modal editing and lots of plugins. Open source.
http://www.vim.org/

3) Emacs (GNU)

Flexible, scriptable editing environment with many features. Open source.
http://www.gnu.org/software/emacs/

4) NetBeans (Oracle Corp)

Open source IDE with great Java support and nicely integrated features.
https://netbeans.org/

5) Eclipse (Eclipse Foundation)

Power ful, open source IDE with multiple language support and tons of plugins.
http://eclipse.org/



-41-

GLOSSARY

Array A collection of elements with the same data type.

Bytecode An inter mediate code between human written source code and code that
the machine understands.

Class A user defined, composite data type binding both properties and meth-
ods into one entity.

Derived Class A class that inherits its members from another (super) class.

Method A gr oup of statements that achieve a particular task by operating upon a
members of the class.

Object An instance of a class.

Super Class A class which serves as a parent to other classes letting its members be
inherited.


